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Japan 

Received 1 February 1994 

Abstract. We investigate numerically the critical lines and the critical properties of the fluid- 
dimer and the Nhl-dimer lransitions of the S = & antifermmagnetic XXZ chain with next- 
nearest interactions, and we confirm that the universality class of Lhis model belongs to the 
quantum s i n d o r d o n  model. as is expected from the bosonization. The method which we 
use in this paper to calculate the critical lines is free from the logarithmic camctions on the 
KosterliwThouless (K-T)-type bansition line. which have nude the K-T critical point difficult 
to obtain. By the use of this method, it is possible to determine the K-T critical line with high 
precision from small size data, and to identify the UniversaJity class. 

1. Introduction 

The S = $ antiferromagnetic X X Z  chain with next-nearest-neighbour interactions is one 
of the typical models of competing interactions. This model is described by the following 
Hamiltonian: 

where we assume the periodic boundary condition SN+I = SI, and N is the number of spins 
(N even). In this study we confine ourselves to the A 3 0 case. 

For (Y = 0 the ground-state properties are well known from the Bethe ansatz and the 
bosonization. In the region 0 4 A < 1, the ground state is characterized by the gapless 
excitation and the power decay of the spin correlation. This state is called the spin-fluid 
state. When A > 1, this system is N&l ordered and it has a twofold degenerate ground 
state separated from the excitation spectrum by a gap 11.21 

(x = cosh-’ A) 
nsinhx n=m 1 

cosh[(2n + 1)7rz/Zx1 x n=-m 
A E = -  

On the line a = 4, the exact ground state has been obtained [ 3 4 .  Introducing the 

(3) 
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notation for the singlet pair : 
1 I L m l =  -(?IC, - .Irtm) .Jz 



5714 

and defining O l ( N )  and Q z ( N )  as 

K Nomura and K Okamoto 

Q ] ( N )  E [1,2][3,4], . . [ N  - 1, NI 
Q z ( N )  E [2,3][4,5]. . . [ N ,  I] (4) 

we can see that both O , ( N )  and Q z ( N )  are eigenstates of the Hamiltonian (1) having energy 

E , ( N )  = -$NJ (5) 

when a = i. The above energy E , ( N )  was proved to be the ground-state energy by van den 
Broek [5] and Shastry and Sutherland [6]. Note that the matrix element (Q11Qz) vanishes 

(6) 
so that the two states Q1, Qz become orthogonal in the thermodynamic limit. Affleck et 
a1 [7] proved that only the states 01, QZ are the ground states and there is an energy gap 
between the ground state and the first excited state. Therefore the ground state is the purely 
dimerized state when a = 4. The dimer state is characterized by the excitation gap, the 
exponential decay of the spin correlation, and the dimer long-range order. 

According to the above facts, there must exist a fluid-dimer transition line (0 < a c ( A )  < 
i, 0 < A < 1) and a Ndel-dimer transition line (0 < ru,(A) < f. 1 < A). With the 
bosonization technique used by Haldane [8] and Kuboki and Fukuyama 191, equation ( I )  
is transformed into the quantum sineGordon model. At a glance, it may seem possible to 
determine the phase boundaries because the critical properties of the sineeordon model 
are well understood by use of the renormalization-group method. However, the mapping 
of (1) onto the s i n d o r d o n  model is reliable only near A = 0 and a = 0, since the 
interaction couplings and the spin-wave velocity are renormalized and there is an ambiguity 
in the selection of the ultraviolet cut-off. Therefore we cannot correctly obtain the phase 
boundaries only by the bosonization. We must use the numerical results for the determination 
of the phase boundaries. 

Tonegawa et a! [ 101 diagonalized numerically the finite-size spin Hamiltonian (I). In 
order to determine the critical line ac(A) ,  they applied the phenomenological renormalization 
group (PRO) method. But it is pointed out that in the case of the Kosterlitz-Thouless-type 
transition, the PRG method may lead to-the wrong critical point [I21 because of the irrelevant 
(marginal) operators. 

In our previous papers [ I ] ,  121. we have obtained the phase diagram of this model, 
assuming that the low-energy excitations of (1) are described by the sine-Cordon model. 
In this paper we discuss the universality class of these transitions, and we confirm that the 
asymptotic long-distance behaviour af this model is described by the sineGordon model, 
as is expected. 

In the phase diagam of the sineGordon model, there are the Gaussian fixed line and the 
Kosterlitz-Thouless (K-T)-type transition lines. At the K-T transition point, the divergence 
of the correlation length is not of the usual power-law type but very singular [13], 

as 
NI221 - N I 2  

(Q11Q2) = (-1)- 

-. 
5 - exp(constant x (a -ac)-") .  (7) 

In fact, all derivatives of the inverse of the correlation length at the critical point are zero. 
Also at the K-T critical point there appear the logarithmic corrections in various quantities, 
such as correlation functions and susceptibilities. Therefore it is very difficult to find the 
critical point of the K-T-type transition. One effective method to find this critical point 
is the Roomany-Wyld method [14], in which the ,3 function is calculated numerically. 
We propose an efficient numerical method for determining the K-T critical point and its 
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universality class. We use the level crossings of the IOW excitations to determine the critical 
point. This idea is an extension of the method by ABeck er al115J. Our method is better 
than the Roomany-Wyld method, as will be discussed in section 5. 

This paper is organized as follows. In the next section, we explain how to determine the 
critical lines of the Hamiltonian ( l ) ,  considering the symmetry of the low-lying excitations. 
In section 3, we calculate the critical exponents using the conformal field theory. In 
section 4, we discuss the asymptotic long-range behaviours expected from the sine-Gordon 
model and we confirm that the universality class of the model (1) is equivalent to that of the 
sine-Gordon model. In the last section, we compare our method with the phenomenological 
renormalization group method and the Roomany-Wyld method. 

2. Critical points 

We determine the critical points using the level crossing of the low-lying states with different 
symmetries. First let us consider the symmetry of the ground state and excited states. 

The Hamiltonian (1) is invariant under spin rotation around the z-axis, translation 
(Sf -+ Sf,,), space inversion (S: -+ Pi-,+,), and spin reversal (S; + 4;). Then 
the corresponding eigenvectors have quantum numbers for the total spin (m = CS;), 
the wavenumber (q = 2 x k / N ) ,  the parity (P = i l ) ,  and the spin reversal (T = il). 
For N = 4n, the ground state is the singlet (m = 0, q = 0, P = 1, T = 1) in 
the whole region. In the spin-fluid region, the first excited state is the doublet (m = 
f l , q  = K. P = -1). The energy gaps will disappear as 1 / N ,  and there is no energy 
gap in the thermodynamic limit. In the N k l  region, the first excited state is the singlet 
(m = 0,q = K, P = -1. T = - l ) ,  which will be degenerate to the ground state as 
A.E(N)  c( exp(-constant x N )  in the N + CO limit. Above the twofold degenerate ground 
state, there is an energy gap. In the dimer region, the first excited state is the singlet 
(m = 0, q = YC, P = I .  T = I ) ,  which becomes also degenerate to the ground state in the 
limit N -+ CO. 

Thus the NCel-dimer transition is determined by the degeneracy between the NCel 
excitation (m = 0, q = K, P = -1, T = -1) and the dimer excitation (m = 0, q = 
K, P = 1, T = I), and the fluid-dimer transition is characterized by the degeneracy between 
the doublet excitation (m = &I, q = K, P = - I )  and the dimer excitation, while the fluid- 
NCel transition by the degeneracy between the doublet and the Ntel excitation. Note that for 
N = 4n + 2. the ground state is (m = 0, q = K, P = -1. T = -l), the doublet excitation 
(m = * l , q  = 0, P = I ) ,  the dimer excitation (m = 0,q = 0, P = -1, T = - I ) ,  and the 
NCel excitation (m = 0, q = 0, P = 1, T = I ) .  

On the basis of the above symmetry consideration, we analyse the numerical data. First 
we consider the NCel-dimer transition. In figure 1 we show the Ntel, the dimer, and the 
doublet excitations ( A  = 2.0, N = 20). Note that the dimer and the Ntel excitations cross 
linearly. As mentioned above, we can determine the critical point %(A, N) by the crossing 
point of the Ntel and dimer excitations. In figure 2, we plot cfs(A, N )  as a function of 
the system size. It is seen from figure 2 that the crossing points aC(A,  N )  are almost 
independent of the system size, and that the remaining correction is O(N-*) 

CU,(A, N )  = Q,(A) + constant x N - ~ .  (8) 
This O(WZ) correction is due to the irrelevant field whose scaling dimension is x = 4. 

This irrelevant field, which does not exist in the pure sine-Gordon model, comes from the 
nonlinear term neglected when linearizing the dispersion relation near the Fermi level in the 
course of the. bosonization. We will explain in section 4, on the basis of the sineGordon 
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Figure 1. The N k l  (O), dimer CO), and the 
O.' O.' 0'3 0'4 0.5 doublet (+) excitations in the N&l and dimer 

oi region (A = 2.0). 

A=Z.O,N=ZO 

NAE 

Figure 1. The N k l  (O), dimer CO), and the 
O.' O.' 0'3 0'4 0.5 doublet (+) excitations in the N&l and dimer 

oi region (A = 2.0). 

1 0.328 

I 
0 0.004 0.008 o,d12 Figum 2. The crossing points udA, N )  of 

the Neel and dimer excimtions as a functon of . ,.., 
the system size N q 1 v -  

model, the reason that the crossing point of the dimer and the Ntel excitations is indeea 
the critical point and that both excitations cross linearly. 

Next we consider the dimer-fluid transition. In figure 3 we show the Nkel, the dimer, 
and the doublet excitations (A = 0.5, N = 20). It is seen from figure 3 that the dimer 
and the doublet excitations cross linearly and in this case the dimer and Ntel excitations 
also cross linearly. As mentioned above, we can determine the dimer-fluid critical point 
ac(A,  N )  by the crossing point of the doublet and dimer excitations. In figure 4, we plot 
ac(A,  N )  as a function of the system size. Also in this case the crossing points a c ( A ,  N )  
obey (8) .  Note that the crossing points of the Ntel and the dimer excitations in the spin- 
fluid region obey (S), too. This is not the critical point, but thii is the Gaussian fixed point 
(y+ = 0) as we shall discuss in section 4. 

Finally about the N6el-fluid transition point, the crossing points of the Ntel and doublet 
excitations always stay at A = 1 because of the SU(2)  symmetry of the Hamiltonian (1) 
itself on this line. 

In summary the whole phase diagram is shown in figure 5 ,  where critical points are 
extrapolated using (8). 
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Flgure 5. The phase diagram of the present 
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dimer-fluid critical points; (0) Gaussian fixed 

0 

A I l /A points. 

3. Critical exponents by the conformal field theory 

Conformal field theory [16,17] is a powerful method to determine the critical dimensions 
of the two-dimensional classical system which is scale invariant, that is, at the critical fixed 
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point. It also describes the one-dimensional massless quantum system at T = 0. One 
important result of the conformal field theory is the relation between the critical dimensions 
and the energy gaps of the finite-size system with periodic boundary conditions [IS1 

K Nomura and K Okamoto 

2 7 I U X “  
En(N)  - E o ( N )  = - N .. 

where x, is the critical dimension and is related to the critical exponent 7 of the 
corresponding correlation function as 2r = v, and U is the spin-wave velocity for the 
model. The other important formula is the finite-size correction to the ground-state energy 
[ 19,201 

x uc 
Eo(N) = € O N  - 

6 N  ~~ 

where c is the conformal anomaly number which plays a central role in the conformal field 
theory. 

At first we must calculate the spin-wave velocity. The spin-wave velocity can be 
obtained from the energy gap at the wavenumber k = 2x/N as 

NAE(k  = 27r/N) 
2 x  

U =  ~~ 

and extrapolating this to the thermodynamic limit. Using this velocity and (lo), we obtain 
the conformal anomaly c = 1 within a few per cent (see figure 6) .  

In the course of the calculation of the spin-wave velocity and other critical dimensions, 
the difficult problem is to estimate the finite-size corrections to them. Unfortunately, the 
explicit formula for the correction of the spin-wave velocity (11) is unknown. For the 
critical dimension, the correction from the irrelevant field x‘ (x’ > 2) to (9) is obtained by 
the perturbation as O(N2-”‘) [21]. Also, for the conformal anomaly, since the first-order 
perturbation term disappears by the symmefxy, the remaining correction is O(N4-”’) and 
the amplitude of this term is small 1221. However, for the irrelevant operator L-2L-21, 

which is the descendant of the identity operator 1 and which has a scaling dimension x = 4, 
the first-order perturbation to the ground-state energy remains and the amplitude of this 
term is larger than other terms. Hence this x = 4 correction gives the main contribution in 
many cases. Therefore, assuming the conformal anomaly c = 1, we will use the following 
equation: 

(12) 
x u  

Eo(N)  = EON - -(1 + O(N-’))  
6N 

I , , , , I , , , , I Figure 6. The conformal anomaly c (IO) on 
0.8 o,2 o,4 o,E o.E o,6 o,4 o,2 the Ruid-dimer and Neel-dimer critical lines. 

Here we use the spin-wave velocity obtained 
A l / A  from (11). 
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Figure 7. The values of N A E , / 2 r v  (A€"  : 
energy gap) for he N M ,  dimer, doubler 
excitations as a function of system size N .  
(a) doublet (&) N b i  (0) and dimer (0) 
excitations. 

Figure 8. The critical dimensions for Ihe N&i 
(0). dimer (0). doublet (+) excitations. 

in order to obtain the spin-wave velocity. As will be shown in section 4, the spin-wave 
velocity calculated by this method is more accurate than that from (11). 

Next we consider the critical dimensions. In general, there are the corrections from the 
irrelevant operators and it is difficult to eliminate them. However, as we shall explain in the 
next section, on the NdeMimer line there are no irrelevant fields within the sineGordon 
theory. and there is only the x = 4 irrelevant field which is not included in the sineGordon 
model. Thus critical dimensions can be obtained as 

(13) 
27rUX" 

E , ( N )  - E o ( N )  = - (1 + o(N-2)) 
N 

(see figure 7). In figure 8 we show the critical dimensions for the Nhl ,  dimer and 
doublet excitations. Note that these critical exponents vary continuously as the anisotropy 
A changes, which is typical for the c = 1 conformal field theory [23]. 

On the dimer-fluid (or the N6el-fluid) transition line, there are the logarithmic 
corrections from the marginally irrelevant field. However, the ratios of the logarithmic 
corrections in the several low-energy excitations can be obtained from conformal field 
theory [15], which enables us to eliminate the logarithmic corrections. We will treat this 
point in the next section. 
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4. Sine-Gordon model and universality class 

In this section we review the renormalization-group properties of the sinffiordon model 
and explain why the crossing of the low-energy excitations is linear and investigate the 
universality class of this model (1). 

With the bosonization technique used by Haldane [SI. and Kuboki and Fukuyama [9], 
equation (1) is transformed into the quantum sine-Gordon model: 

K Nomura and K Okamto 

where the commutation relation 

[ $ ( x ) ,  n ( x ’ ) ]  =i8(x -2 )  
holds, and (I is the lattice constant. The coefficients U ,  K and g+ are related to a, A as 

u = 2 m  g+=-2nza2D 

where 

n 

1 
2a D = - (A - ( 2 +  A)a)  

It is seemingly easy to determine the phase boundaries because the critical properties of 
the sine-Gordon model are well understood by use of the renormalization-group method. 
However, the expressions for the coefficients ( A ,  C ,  D )  are reliable only near A = 0 and 
01 = 0. Therefore we cannot correctly obtain the phase boundaries themselves from (16) and 
(17), although the critical properties are qualitatively well expressed by the sine-Gordon 
model. We must use the numerical results for the determination of the phase boundaries. 
However, there are the corrections from the irrelevant fields which make the extrapolation 
of the finite-size results very difficult. Then we first review the renormalization properties 
of the sine4ordon model and we explain the method to avoid the correction from the 
irrelevant fields. 

The renormalization-group equations for the sineGordon Hamiltonian (14) up to the 
lowest order in yo and y+ are 

where 
go gm 80 

yo(0) = y+(O) = - K = 1 + - , 
IU 2 R U  

The flow diagram of (1 8) is shown in figure 9. For the finite spin system, 1 is related to N 
by ef = N.  Note that there are three critical lines: that is, y+ = 0 (yo  < 0) corresponding 
to the Ntel-dimer transition line, y+ = -yo (yo z 0) to the fluid-Ntel transition line, and 
y+ = yo (yo z 0) to the fluid-dimer transition line. 

First we explain the reason why the difference of the dimer and Ntel excitations is 
linear near the Nkl-dimer transition line, etc. According to Giamarchi and Schulz [24], 
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YO 

Figure 9. The flow diagram of the renormalization (18) 
on the yo-y+ plane. The phase boundaries are shown 
by the thick lines. 

where S ( x )  is a dual field of @ ( x )  defined as nn(x) 
exponents qi ( l )  are related to the correlation functions by [25] 

lO(rl0) 

a,e(x). The renormalized critical 

Ri = exp [ dl qi(O] (22) 

and by the use of (9). which relates the critical exponent 7 to the energy gap for the 
finite-size system, we obtain 

Although (9) is satisfied under the condition of scale invariance, by the use of the 
renormalization group, we extend this relation to the region where scale invariance is not 
strictly satisfied but the system size is sufficiently smaller than the correlation length of 
the N + CO limit. 



5782 K Nomura and K Okamto 

Therefore the differences of the low-energy excitations are linear with the distance from 
the critical lines and these are the good quantities to determine the critical lines. Note that 
the fast varying parts of the spin operators are expressed by S ( x ) ,  +(x) as 

S: o( einxe-ifik) S: z einr cos [Jz+(x)] (3) 
and 

s:s;+, + s;s:+, o( einXsin[&+(x)] (26) 
respectively. Then the correlations Ro, RI = R2, R3 correspond to the NCel, doublet dimer 
correlations, respectively. 

At this stage we consider the universality class on the NBel-dimer transition line 
(y+  = 0). On this line the critical exponents vary continuously as shown in figure 8, which 
is natural from the viewpoint of the sinffiordon picture. However, when we assume the 
Gaussian model, i t  is well known that there is only one parameter which govems these 
critical exponents. The relation of the critical dimensions corresponding to the q = lr 
excitations ( N  = 4n case) is written as 

Xdimer = Xneel (27) 
Xdoubletxdimer = $ (28) 

because the doublet, NCel and dimer correlations behave as 
(s:s;) cx eirr(exp(-iJ%(r)) exp( iAe(0) ) )  o( 2zrr-1'K 
(S:S;) cx ein' ( cos ( f i+ ( r ) )  cos(Jz$(o))) a einrr-K 

((sO~S; + s;s:)(s,+s;+, + S;S:+~)) o( 2zr(sin(J55(r))  s in(J?(O)) )  a einrr-" 

and the relation q = 2x. 
There are also relevant, marginal and irrelevant fields corresponding to the q = 0 

excitations (N = 4n case). The critical dimensions corresponding to them satisfy the 
following relation [26]: 

(29) 

XEI = 4Xnee1 (30) 

Xirrel = 4Xdoublet. (32) 
The x,~ is related with the mass-gap generation near the Nkeldimer critical line. The 
reason is as follows. Considering the case of ) !+(I )  << 1, yo(I) e 0 and the renormalization 
equations(l8), we obtain 

xmug = 2 (31) 

Y+(O = Y~(O)~XP[-YO(O)~I.  (33) 
In the neighbourhood of the critical line, the correlation length 6 is defined as the value 
6 -e' for which )!,,+(I) becomes of order unity. Hence, 

InydO) = yo(O)In6 (34) 
from which the critical exponent U (e  E y+(O)-") becomes 

1 
(35) - - -  - Y O ( 0 ) .  

U 

The scaling dimension x,~ and U are related by 1221 

1 
- =2-x,1. (36) U 
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Z d w m  ' (Zdimei + znd)/z 

Figure 10. The one-partmeter scaling relation 
of lhe q = r excitations. (a) The mios 

1.0 0.8 0.6 0.4 0.2 0.0 Xmci/Xdimcr; (b) the pmduas .KdOUbiSt(XIYEi + 

::mi 
0.24 

I l A  xmmc,)/Z far vxious anisotropies. 

40 

O f  
35 

0 0  NAE 

Figure 11. The excitation spectrum at y = 
0 near the Nkel-dimer critical point n.JA). 
(o)y = 0 excitation; (+)Sy = & I  
exciwion; (0)Sy = *2 excitation. 

From (19) and (30), we see that, K = 1 + yo12 = ZX,,~, to obtain 

Xre~ = 4xnee1 . (37) 

There are also marginal fields x = 2 so that along the Nkel-dimer critical line there is no 
mass generation and the critical exponents are varying continuously due to this field [26]. 

Now we check whether these relations hold for the critical dimensions obtained in 
section 3. In figure 10, we show the ratios x.,,I/xdimr and the products ~ d ~ ~ b & ~ ~ ~ ~  + 
xdimer)/2 at various anisotropies A. We show the excitation spectra at q = 0 in the 
neighbourhood of the Nkel-diier critical line in figure 11.  There are the twofold degenerate 
Sia = 0 state corresponding to x,,, the twofold S y  = f l  and one S y  = 0 state to xmarg, 
and one = f 2  state to xirel. In figure 12, we also show the ratio 2xre~/(xoct~ +xfimu), 
xjmr/xdoubla and the marginal fields xmg at various anisotropies. The one-parameter scaling 
relations for the Gaussian model hold in high accuracy. Therefore we conclude that this 
critical line belongs to the Gaussian universality class. 

At last we consider the universality class on the fluid-dimer critical line. There are the 
logarithmic corrections which make the extrapolation of the critical exponents very difficult. 
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c 
Fi- E!. The one-parameter scal- 
ing relation of the p = 0 excitations. 
( U )  The n t i o  X ~ I / ( ( X . ~ I  t xcmcr)12); (b) 
the ratio x i n ~ / x d o y b ~ c t ;  (c) the marginal 

2 .01 8 ;  3 p T; *, f 1 
0.8 0.6 0.4 0.2 0.0 hug. (0) SF' = 0, (+) s:"1 = *I, 

I/A (X) S:"' = *I; for various anisotropies. 
1 

1.9 

Figure 13. The energy differroce A E  
beween the dimer and doublet excitation 
on the dimer-8uid critical line. The N A E  
converges as l / N 2 ,  and this means that the 
SUO) S Y m m e b Y  wpws. 

But in the case of the p2 = 8x sineGordon model, which is equivalent to the SU(2) k = 1 
Wess-Zumino-Witten model [27], the ratios of the logarithmic corrections can be obtained 
[20] so that it is possible to e l i n a t e  them by the use of the several low excitations [28]. 
That is, 

1 1 1  
x l ( r )  = xz( i )  = x3(l) = - - -- 2 41nN 
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Sy = *Z, Sp = i1 states measured from 
= 0 excitation. ( 6 )  The energy gap of 

-2.0 0.008 0,012 q t + & 1  states measured from Sy = 0. The 
N A E  mnverges as 1 / N 2 ,  and this means 

0.004 0 

vfl that the SUD) symmetry appears 

A = 0.5 
( % d ( l )  + Idinrr(f) t 2 ' ~ d o s b I d ( f ) ) / 4  

0.520 

t 0.515 

1 3 1  
2 4InN 

xo(1) = - + -- (39) 

which enables us to eliminate logarithmic corrections using the average of (noee,(l) + 
We check whether these relation hold for the critical dimensions. In figure 13 we show 

the energy difference between the dimer and doublet excitations as a function of the system 
size (A = 0.5). It converges to zero with 1/N2 due to the x = 4 irrelevant field. We 
also check the SU(2) symmetry at q = 0 excitations for S,.t = 0, f l ,  1 2  in figure 14 
(there are three Sy = 0, two S:t = &I, one SF' = 4 2  excitations which correspond to 
the x = 2 critical dimension). This means that on this cri t ical line, within the l i t  of the 
sinffiordon model, the SU(2) symmetry appears by the renormalization which does not 
exist in the original Hamiltonian (1). 

In figure 15, we show the average (xnml(l) + x h ( 1 )  + 2xdOublet(1))/4 as a function of 
the system size. It converges to n = $ as expected. The remaining correction is due to the 
n = 4 irrelevant field. In figure 16 we show the extrapolated average for various anisotropy 

X~mer(O + %oubln(O)/4. 
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A. Therefore we conclude that this critical line belongs to the p z  = 8rr sine-cordon model 
(which has an SU(2)  symmetry) universality class. 

5. Discussions 

Our idea that the level crossings of the low excitations can be used to determine the critical 
point is developed from the work by AfAeck et af [If], who studied the isotropic X X X  
case for this problem on the basis of the conformal field theory and the renormalization 
group. But it is not clear in their work how to determine the Kosterlitz-Thouless (K-T)-type 
critical point for the anisotropic case. Furthermore, they did not point out that the difference 
of the low-energy excitations is proportional to the distance from the critical point, which 
makes it easier to determine the critical points. 

In the following we compare our method with the other methods to analyse the K-T-type 
transition from the finite-size calculations. 

First we point out that the phenomenological renormalization-group calculation, which 
is useful for the second-order transition, leads to the false conclusion in the K-T-type 
transition. Tonegawa, Harada and Kaburagi (m) [IO] diagonalized numerically the finite- 
size spin Hamiltonian (1). In order to determine the critical line aC(A) .  they applied the 
phenomenological renormalization group (PRG) equation, 

(N  + 2 ) A E ( N  + 2, 01dA.  N + 1)) = N A E ( N ,  01dA, N + I)) (40) 

AE,a(N) Ep'(N) - EAo)(N) (41) 

and extrapolated cuc(A. N )  to &(A, CO). For A E ( N ) ,  they used the singlet-doublet energy 
gap for the N spin chain, 

where E,"(N) and E i ) ( N )  are the lowest energy and the Ith excited energy in the 
E. 3 = m space, respectively. For the isotropic case ( A  = I), their result of 01, = 0.25 
is consistent with 0 1 ~  = 0.2411 * 0.0001 determined by Okamoto and Nomura [ll].  
Furthermore, their Nkel-dimer critical line is almost the same as OUTS. But with the dimer- 
fluid transition line cuc(A), THKS crC(A) decreases as A decreases, in contrast to our results 
where -&(A) increases as A decreases. 

The reason for this difference is explained as follows. In the spin-fluid region, the 
cosfiq5 term is renormalized to zero as N -+ CO. Therefore the PRG relation (40) is 

I I  
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satisfied in the lowest approximation and the irrelevant operators become important in 
determining the PRO solution. As is clear from the sineGordon Hamiltonian (14), the PRO 
relation holds best when g+ = 0 (i.e. y+ = 0). In real cases, the PRG relation may have a 
solution near y+ = 0, because there may exist irrelevant operators other than the cos & 
term. as already stated. Since the fluiddimer transition is determined by y+ = yo. the 
PRG solution yields a smaller value of y+ for the fluiddimer transition. Further, using (16) 
and (17). we can see that the PRG solution brings about a value of aC(A) smaller than the 
correct value. Thus the difference between our fluid-dimer line and that of THK is clearly 
explained. 

Here we demonstrate that the PRG solution may lead to an incorrect critical point for 
the K-T-type transition. When 01 = 0, as is well known, Hamiltonian (1) has the fluid-N&l 
critical point of the K-T-type at A = 1. If we apply the PRO method to the finite-size 
numerical data, we obtain Ac = 0.50706 (N = 10.12) and Ac = 0.47654 ( N  = 
18.20). Therefore the critical value Ac obtained by the PRO equation is far from the exact 
value A = 1. Then, the PRO analysis is dangerous for the K-T-type transitions. 

As for the Nhl-dimer transition, the phase transition is from the finite-gap N6el phase 
to the finite-gap dimer phase, and only on the NBel-dimer transition line is the excitation 
gapless. In this case the PRG equation produces correct results. 

Next we compare our method with the Roomany-Wyld method [ 141 which has been 
the most reliable method to treat the K-T-type transition. In the Roomany-Wyld method, 
the critical point is determined by the zero point of the @-function. As for the second-order 
transition, the @-function liiearly crosses the zero point 

In the case of the K-T-type transition, the @-function vanishes higher than the first order 
from the disordered region, and always zero in the power-law decaying region. 

where U is defined in (7). Therefore the accuracy to determine the critical point is less than 
our method, where near the critical point the quantity xo( l )  - x l ( I )  ( q ( 1 )  - x l ( l ) )  crosses 
zero linearly. 

Furthermore, in order to obtain the critical exponents, the curvature of the @-function is 
used in the Roomany-Wyld method. However, this quantity is affected by the logarithmic 
corrections, which bring about an uncertainty for the calculation of the critical exponents. 
By using the method proposed by Ziman and Schulz [28], the logarithmic corrections of 
the critical dimensions can be canceled out, so the problem of the logarithmic correction 
is avoided. 

In conclusion, we could not only obtain the critical lines with high accuracy, but also 
we could verify that the universality class of this model (1) belongs to the sineGodon 
model, as expected by the bosonization. 
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